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EXECUTIVE SUMMARY 

Maintenance and rehabilitation work on the existing highway system are becoming increasingly 

critical to maintain the long-term mobility and safety performance of the aging highway 

infrastructure. However, the closed construction work zones inevitably cause significant 

adversarial mobility and safety impact to the traveling public. A sound construction phasing plan 

that strikes a balance between traffic impact and constructability is crucial to determine the most 

feasible work zone length (WZL) in order to minimize traffic inconvenience to motorists while 

ensuring on-time completion of the project.  

Despite the wealth of research that has aimed to understand the effects of highway work zones, 

very little definitive information is available concerning the determination of WZL. Quantitative 

studies that holistically model WZL are very rare. To fill this gap, this study identifies critical 

factors affecting WZL and develops decision support models that determine the optimal WZL in 

a balanced tradeoff between motorists’ inconvenience due to traffic disruption and their 

opportunity cost. A high-confidence dataset was created by conducting a series of scheduling and 

traffic simulations and analyses. The results revealed that traffic loading and work zone duration 

are critical factors, with traffic loading at approximately 41,000 vehicles-per-day being an 

important benchmarking point. Based on these findings, a decision support model was developed 

to determine the most feasible WZL. As the first of its kind, this study will help state transportation 

agencies devise sounder construction phasing plans by providing a point of reference when 

establishing WZL in a viable way to minimize traffic disruption during construction. 
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1. INTRODUCTION 
The aging highway infrastructure directly affects the health of the nation’s economy unfavorably 

in many ways, due to the decreased mobility and safety performance provided to the traveling 

public. Thus, maintenance and rehabilitation work on the existing highway system are becoming 

increasingly critical to improve the long-term mobility and safety performance. When a certain 

section of highway is under construction, it is called a construction work zone (CWZ). During 

construction, traffic and construction work exist in close proximity to one another (1, 2). A CWZ 

typically includes closed or narrowed lanes, and highway traffic is influenced by traffic on nearby 

roadways, as well as earlier flow through the same location. Due to sudden speed drops and 

mandatory lane changes caused by CWZs, delays and rerouting account for the average driver 

wasting 67 hours on the road and 32 gallons of fuel annually, and 97,000 crashes each year. This 

implies that CWZs create both spatial and temporal restrictions on highways with reduced capacity 

and have an adverse traffic impact on motorists (3). An earlier study showed that around 20% of 

highways in the national highway system have scheduled construction work during the peak 

construction season, and approximately 24% of non-recurring delays on highways are caused by 

CWZs (4).  

To minimize the impact that a CWZ has on the traveling public, it is very common to use a 

construction phasing plan that defines the length of the CWZ closure and describes how the entire 

project should be split. In practice, such construction phasing plans are typically developed by 

estimating and comparing road user cost (RUC) for project alternatives under consideration. 

However, when a phasing plan is poorly conceived, it can cause significant traffic inconvenience, 

resulting in excessive RUC for the traveling public (2, 5). State transportation agencies (STAs) 

commonly implement mobility assessments of rehabilitation project’s phasing plans based on daily 

commuters and business interests. These assessments are critical, but they are also difficult to 

perform and expensive to conduct, with the primary problem being a lack of effective analytical 

tools and methods. There is an urgent need to develop a means of correcting and improving the 

results of CWZ phasing plan modeling to minimize the mobility impact of CWZs to the traveling 

public.   
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2. OBJECTIVES 
To meet the pressing issue of a lack of practical methodology to improve CWZ phasing plan, this 

project aims to develop a practical and easy-to-use toolkit to assist STAs improve construction 

phasing plans of CWZs. The specific objectives of this study were twofold:  

a) identify critical factors affecting decisions related to lane closure length in rural highway 

rehabilitation projects and  

b) develop a novel decision support model for determining the optimal work zone length 

(WZL), accounting for all critical factors.  

This research will greatly benefit STAs and the traveling public by significantly improving 

mobility around the CWZs and positively affecting regional development.
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3. LITERATURE REVIEW 
Research studies have shown that the level of traffic inconvenience during construction is closely 

tied to the length of the CWZ, duration of lane closure, and level of traffic loading. There exists a 

tradeoff between motorists’ inconvenience and project constructability: as the WZL increases, so 

does the public’s inconvenience, since the approaching traffic flow needs pass through the CWZ 

with reduce the speed (6); but setting the WZL too short will increase the closures needed to 

complete the project, reducing the efficiency of the construction activities due to the fact that there 

are more repeated work zone setup steps (7). Therefore, it is imperative to develop construction 

phasing plans that strike a balance and viable tradeoff between reducing disruption to the traveling 

public and minimizing construction time. 

Studies on how best to determine CWZ length are rare, and those that do exist lack definitive 

practicality that accounts for critically influential factors (8, 9). Specifically, the core problem is a 

lack of a standardized methodology and set of analytical tools for proactively estimating WZL that 

consider potentially critical latent variables, such as traffic state, schedule, capacity, and user cost. 

There is a lack of practical methods and analytical models that proactively assess the trade-off 

between traffic impact and WZL with an up-to-date quantitative model. As a result, no 

comprehensive practical methods or tools for phasing plan are currently available that mirror the 

unique dynamics of changes resulting from highway rehabilitation work.  

Haseman et al. (10) collected 1.4 million travel time records over 12-week period to evaluate 

quantifiable travel mobility metrics for a rural highway work zone. This study conveyed a 

conclusion that travel time could be significantly delayed by construction activities as well as 

safety incidents in and between the construction work zones. This study concluded that both traffic 

delay and accident costs would have an adversarial effect on the total project cost, which need to 

be considered in the project scoping phase through a robust transportation management planning 

process (6).  

McCoy et al. (11) developed a method for optimizing WZL by minimizing RUC and traffic control 

cost for rural four-lane highways. That study provided researchers with a framework for 

optimizing WZL by minimizing the total cost, including costs related to user delay, vehicle 

operation, construction operation, and accidents. However, the study was conducted in the 1970s. 

Many variables (such as unit cost factors) change over time. The method is now outdated and 
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likely not applicable in today’s environment. Based on McCoy’s method, Martinelli and Xu (12) 

updated the variables and added a vehicle queue delay cost that took traffic control and operating 

costs into consideration, increasing the accuracy of this method under various conditions. 

However, these studies were based solely on cost factors, and other critical factors like 

construction duration were absent. 

Chien and Schonfeld (6) developed an optimization method by formulating a total cost function 

and leveraging it to optimize WZL. The function they proposed was minimized by using a classical 

optimization approach (i.e., setting derivatives to equal zero and then solving) involving 

components that significantly influence WZL, including but not limited to work zone speed, 

approaching traffic flow, work zone setup cost, maximum discharge rate, total agency cost, and 

construction duration. The proposed modeling method demonstrated how WZL could be 

optimized based on significant factors. Their model was more comprehensive and complete than 

those proposed in earlier studies. However, the authors assumed that if the work zone capacity was 

more than the annual average daily traffic (AADT) volume, no queue would form. Since traffic 

flow varies by day, this assumption does not hold, at least for part of the day (2). 

Chien and Tang (13) developed a genetic algorithm model to optimize work zone length and 

staging plan. This study attempted to incorporate the total project cost concept that includes 

maintenance cost, road user cost, accident cost, and vehicle operating cost with a set of project 

peculiarities. The total cost model developed in this study is a nonlinear, discontinuous function 

that models an interdependent relationship between key parameters such as work zone length, 

number of work zones, and number of detoured vehicles. It appears that this model is applicable 

to estimate the total project cost within a limited set of input data. 

Watts et al. (14) developed a method for estimating RUC derived from vehicle volume and lane 

closure length in rural freeway work zones. Based on that research, Choi (15) presented case 

studies reporting RUC calculations for projects with lane closures in construction work zones. That 

research specified several factors contributing to RUC, including AADT, work zone speed, and 

WZL. AADT was highlighted in that research because the results indicated that RUC values were 

consistently high in areas of high traffic volume (such as those with high AADT). 

Zhao et al. (16) developed a comprehensive model to optimize CWZ construction schedule with 

x. The FCD in this study were mainly collected by mobile devices (e.g., smartphone) on board of 
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traveling vehicles by INRIX via VPP Suite, which became more accurate and abundant in recent 

years. Their model considered the effects of various factors, such as traffic assignment and safety 

cost. However, their proposed model requires a large amount of input information that might not 

always be available for a project, reducing the practicality of its implementation.  

In recent years, there has been a trend of researchers using simulation models to study how the 

CWZ could affect the traffic (8, 9, 17). Marzouk and Fouad (9) developed a simulation model that 

tries to capture both resurfacing construction activities and traffic flows. This study identified 6 

critical factors, including traffic volume, WZL, average production rate, and average headway. 

However, the optimization method in this study was implemented with a Genetic Algorithm (GA), 

which became less popular recently due to its demanding computational process.   

Microscopic simulation tools can represent nearly actual traffic flows (e.g., CORSIM), but these 

tools are often time-consuming, costly, and sometimes computationally expensive. To combat this 

drawback, Cellular Automata (CA) models based on Nagel and Schreckenberg (18) were used by 

researchers for the higher computational efficiency while still being able to reproduce realistic 

traffic flows. For example, Meng and Weng (17) developed a CA model with improved 

computational efficiency with driving behavior rules calibrated with field data. The results of their 

model were statistically validated with state-of-the-art simulation software to prove its accuracy. 

Though, it is worth mentioning that the scope of this study focused on the efficiency and validity 

of the simulation method itself rather than optimizing the WZL or phasing plan.  

Fei et al. (8) proposed a meticulous two-lane CA model that considered differences in driving 

behavior and vehicle acceleration rates. This study found that the flow rate of the CWZ traffic no 

longer increases after the speed limit reaches 40 km/h (25 mph) when the traffic volume is 

relatively low, as the simulated flow rate for 40 km/h, 50 km/h (31 mph), and 60 km/h (37 mph) 

were identical. Even though this study had several key findings of the merging behavior of CWZ 

traffic, it did not focus on the optimization of the phasing plan.  

Construction Analysis For Pavement Rehabilitation Strategies (CA4PRS), a construction 

management software has been applied to analyze cost and benefit for different work zone 

construction alternatives (19). This tool takes constructability, road user cost, resource constraints, 

and lead-lag relation into consideration, which allows researchers to create traffic simulation for 

different work zone alternatives. However, optimizing construction scheduling plan with CA4PRS 
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requires numerous trials, while the delay and RUC calculation must rely on external traffic analysis 

tools, such traffic simulation model or capacity analysis model. Table 1 summarizes the existing 

body of knowledge pertaining to work zone length estimation methods. As Table 1 shows, specific 

to the determination of optimal work zone length, very few studies explored the ways to determine 

WZL as a function of critical influential factors. Those that do exist lack definitive information 

regarding the trade-off between traffic impact and WZL with an up-to-date quantitative model.  

Table 1. Summary of the Literature Review 

Author/Date Method Topic/Focus Findings 

Nagel & 
Schreckenberg 

(1992) 

• Boolean Simulation 
Model 

• Quantitative Comparison 
with Realistic Traffic 

• Traffic Flow • Discrete modelling is more 
computational efficient and can capture 
driver’s behavior. 

Martinelli & Xu 
(1996) 

• Statistical Analysis • Traffic Delay 
• Optimal WZL 

• Highway capacity & LOS analyses to 
estimate traffic delay 

• Traffic control-RUC tradeoff model 

Chien & 
Schonfeld 

(2001) 

• Cost Objective Model 
• Traffic Simulation 
• Statistical Analysis 

• Optimal WZL • Shorten the WZL or increase CWZ 
speed can reduce RUC 

Jiang & Adeli 
(2003) 

• Boltzmann-simulated 
Annealing Neural 
Network 

• Statistical Analysis 

• Traffic Delay 
• Optimal WZL 
• Traffic Flow 

• WZL and ADT can be used to predict 
traffic delay and RUC 

Haseman et al. 
(2010) 

• Bluetooth Probe Data 
from Field Collection 

• Empirical Analysis 

• CWZ Traffic 
Delay 

• Prove that WZL affects RUC with field 
data 

• Prove that CWZ can cause road capacity 
drop with field data 

Meng & Weng 
(2010) 

• Cellular Automata (CA) 
Model 

• Case Study 
• Statistical Comparison 

• Work Zone 
Configuration 

• CA model can estimate traffic delay 
with high efficiency and accuracy 

Watts et al. 
(2012) 

• Microsimulation model 
• Case Study 
• Statistical Comparison 

• Traffic Flow 
• Optimal WZL 
• Road User Cost 

• WZL and RUC have a positive linear 
relationship 

Chien & Tang 
(2014) 

• Objective Total Cost 
Function 

• Genetic Algorithm 
Optimization 

• Statistical Analysis 

• Total Cost 
• Work Zone 

Schedule 

• A practical and cost-effective CWZ 
schedule to minimize RUC 
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Marzouk & 
Fouad 
(2014) 

• Traffic Simulation 
• Genetic Algorithm 

Optimization 
• Numerical Example 

Demonstration 

• Optimal WZL • An efficient framework to estimate 
project duration and total RUC 

• Single objective optimization algorithm 
to minimize RUC 

Fei et al. 
(2016) 

• Meticulous Two-Lane 
CA Model 
Traffic Simulation 
Empirical Analysis 

• Traffic 
Optimization 

• 40 km/h is an optimal speed limit for 
CWZ 

Zhao et al. 
(2019) 

• Traffic Simulation 
Case Study 
Statistical Comparison 

• Optimal WZL 
• Optimal CWZ 

Characteristics  

• A practical method for CWZ schedule 
that minimize RUC 

Choi J 
(2020) 

• Case Study 
Statistical Comparison 

• Road User Cost 
• Lane Closure 

• AADT is a determinant for RUC 
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4. METHODOLOGY 
This study blends existing traffic simulation techniques with a stochastic analysis to model WZL 

as a function of RUC and traffic load, simultaneously capturing the mobility impact, production 

rate, and project schedule. The objectives of the study were achieved by enacting a four-stage 

methodology that articulated a new data creation technique and modeling framework, where WZL 

was assessed by implementing a balanced tradeoff between travelers’ inconvenience measured by 

RUC and constructability evaluated by project duration. These steps were as follows (see Figure 

1):  

1. Data creation. A rich set of 285 traffic and 84 schedule datapoints was created by a 

series of macroscopic traffic simulations established using the Constructability 

Analysis for Pavement Rehabilitation Strategies (CA4PRS) software. 

2. Critical factor identification. Critical factors affecting WZL determination were 

investigated by calculating descriptive statistics and conducting factor and schedule-

traffic interdependency analyses.  

3. Preliminary modeling. Two preliminary predictive models assessing the effects of 

traffic delay and project schedules were developed to quantify the impact of WZL on 

road users and project schedule.   

4. Decision support model. Leveraging the two predictive models developed in the 

previous stage, a decision-support model quantifying the total RUC throughout the 

entire project duration was developed, and a subsequent WZL sensitivity table (see 

Table 4 and Table 5) was developed. 
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Figure 1. The four-step research objective and methods implemented in this study. 

This study relied on the following assumptions and had the following limitations: 

• This study focused on a typical work zone configuration for four-lane rural 

highways, where one lane is closed in each direction during construction. 

• This study was limited to resurfacing, restoration, and/or rehabilitation (i.e., 3R) 

types of concrete pavement projects.  

• For the project schedule analysis, it was assumed that contractors’ productivity 

levels would not be significantly different from one another.   

• The schedule estimate model was based on the assumption that generic resources, 

production rates, and sequences of construction would be implemented.   

• For the traffic simulations, a conventional rural traffic pattern was referenced and 

adopted. 

• Changes in traffic demand by no-shows and trip mode adjustments were assumed 

to be minimal because the scope of this study was confined to rural highway 

networks. 

• The effects of microscopic factors (e.g., lane merging, detours, demand reduction, 

etc.) were considered minimal and thus not incorporated into the analysis. 
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4.1 Data Generation 
According to the Federal Highway Administration, the CA4PRS software is reasonably accurate 

in predicting optimum pavement construction production rates and reliable mobility impacts (19, 

20). Thus, it can be used to back-analyze historical 3R highway projects. CA4PRS is a software 

package endorsed by the Federal Highway Administration (FHWA) that is capable of assisting 

transportation agencies with integrated scheduling, traffic, and cost analyses for highway 

rehabilitation projects. Since 1999, the accuracy and reliability of CA4PRS has been proven in 

relation to numerous highway 3R projects in California, Washington, Minnesota, and Texas. 

Therefore, the research team believed it would be an effective tradeoff simulation tool for 

creating the study data of competing phasing plans. Specifically, it was used in this research as a 

primary analytical tool for creating traffic impact data and simulating traffic delay effects across 

various levels of traffic loading (measured according to AADT volume).  

The CA4PRS software has three interactive analytical modules: a scheduling module to 

estimate the duration of the project, a traffic module to quantify the impact of the time delay 

caused by work zone lane closure, and a cost module to compare the differences among various 

design and construction alternatives. Specific to this study, the traffic module for CA4PRS was 

utilized to simulate the traffic impact with conventional rural highway traffic conditions. On the 

other hand, the schedule module was used to simulate the project schedule, using generic rural 

highway construction peculiarities and constraints as input. Based on the latest AADT 

information for rural 2 x 2 lane highway networks across the state of Texas (21, 22), a series of 

traffic simulations were performed for various AADT volumes ranging from 6,000 vehicles-per-

day (vpd) to 40,000 vpd at an interval of 2,000 vpd. For the respective AADT simulation 

datapoints, WZL values at increments of 0.1 mile and ranging from 0.1 to 1.5 miles were 

simulated to examine how traffic delay might be affected by the choice of WZL and level of 

traffic loading (see Figure 2). For schedule simulations, a typical 12-inch concrete rehabilitation 

sectional profile was selected with a continuous closure, continuous operation, and concurrent 

working methods. 

Performing large numbers of macroscopic traffic simulations can be tedious and time 

consuming, but they are effective for generating important benchmarking datasets such as daily 

traffic delay (DTD), maximum delay, and maximum queue length. Table 2 presents key 

parameters incorporated into the traffic simulations in the present research. Since the primary 
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scope of this study was confined to rural highways, detours were not considered. The roadway 

capacity information specified in the FHWA guidelines (23) was adopted. The truck percentage 

was converted into passenger car count by applying a passenger car equivalent (PCE) factor, as 

suggested in the guidelines. In this study, the concept of equivalent AADT (i.e., EAADT), which 

reflects the weighted value of truck percentage (𝜏𝜏), was used and computed by the following 

equation:  

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 × [1 + 𝜏𝜏 × (𝑃𝑃𝑃𝑃𝐸𝐸 − 1)] (1) 
 
Table 2. CA4PRS Traffic Simulation Parameters 

Roadway Capacity Parameters 
Basic Capacity (vphpl) 2,200  Work Zone Capacity 

Adjustment Factor 
0.70  

Lane Width Factor  0.95  Shoulder/Lateral Factor 0.95  

Traffic Demand Parameters 
EAADT (vpd) 6,000-

42,000 
 Detour (%) 0  

Normal Speed Limit (mph) 75   CWZ Speed Limit (mph) 45  

Lane Closure Parameters  
Lanes Closed (lane) 2  Lanes Remaining Open (lane) 2  
Lane Closure Length (mile) 0.1-1.5  Lane Closure Per Day (hour) 24  

 

When devising competing construction phasing plans, it is imperative to note that the 

duration of the lane closure (i.e., the number of days lanes must be closed during construction) is 

one of the major contributing factors to the level of traffic inconvenience. With this practical prior 

knowledge, the research team took into account project duration when modeling the optimal WZL. 

CA4PRS’s deterministic schedule simulations were implemented by experimenting the effects of 

various levels of activity constraints on WZL; namely, for the idle times of non-value-adding 

construction activities such as mobilization/demobilization, lag time, and concrete curing time, a 

series of simulations were performed, ranging from 4 hours to 48 hours at an interval of 4 hours. 

Table 3 presents key parameters considered in the schedule simulations. In this study, the idle time 

(𝐸𝐸0) was defined as follows: 

 𝐸𝐸0 =  𝐸𝐸𝑚𝑚 + 𝐸𝐸𝑎𝑎 + 𝑀𝑀𝑀𝑀𝑥𝑥(𝐸𝐸𝑑𝑑,𝐸𝐸𝑐𝑐) (2) 
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where 𝐸𝐸𝑚𝑚 is the mobilization time, 𝐸𝐸𝑎𝑎 is the activity lag time, 𝐸𝐸𝑑𝑑 is the demobilization time, 

and 𝐸𝐸𝑐𝑐 is the concrete curing time.  

Table 3. CA4PRS Schedule Simulation Parameters 

Construction Scenarios 
Closure Method Continuous Operation Method Continuous 
Construction Window  24 hours/day Working Method Concurrent 

Activity Constraints 
Mobilization Hours 1.0-6.0 Demobilization Hours 1.0-8.0 
Demolition to JPCP 
Installation Lag Hours 1.0-18.0 Fast-Track Concrete Curing 

Time (Hours) 2.0-24.0 

Resource Profile 
Demolition Hauling Truck 
Rated Capacity 

26.5 ton  Demolition Hauling Truck 
Packing Efficiency 

0.55 

Demolition Hauling Trucks 
per Hour per Team 

10 Demolition Hauling Truck 
Teams 

2 
 

Base Delivery Truck Rated 
Capacity 

13.1 cu. yd Base Delivery Truck Packing 
Efficiency 

0.9 

Base Delivery Trucks per 
Hour 

10   

Batch Plant Capacity 117.7 cu. 
yd/hour 

Number of Batch Plants  1 

Concrete Delivery Truck 
Capacity 

7.8 cu. yd Concrete Delivery Trucks Per 
Hour 

15 

Concrete Delivery Truck 
Packing Efficiency 

1   

Paver Speed 6.6 ft/min Number of Pavers 1 
Section Profile 

Existing Surface Type Concrete Existing Surface Depth  8 inches 
Pavement Surface Type JPCP Surface Depth 12 inches 
Base Type CTB Base Depth 6 inches 

 

4.2 Descriptive Factor Analysis 
A descriptive factor analysis was performed on the 285 traffic datapoints, yielding two major 

findings. Firstly, an inflection point of EAADT (�̅�𝐸) on the level of traffic delay was discovered at 

around 41,000 vpd (see Figure 2), which provided an important benchmarking point. Secondly, as 

shown in Figure 2, the level of traffic inconvenience was strongly tied to WZL and EAADT for 

highway networks where the EAADT was less than �̅�𝐸. For urban highway networks where the 

EAADT was higher than �̅�𝐸, simulations did not prove a positive linear relationship because other 
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externalities such as detours, trip mode adjustments, socioeconomic characteristics, travelers’ 

behavior, etc., also played pivotal roles in the effect that traffic delay had. This finding led this 

study to focus fully on rural highway networks. This research hypothesized that the DTD was the 

result of speed-reduction delay (DS) and congestion-induced delay (DC). Since the scope of this 

study included only traditional rural four-lane highway configurations, the effect of DC was 

assumed to be minimal and thus was negligible. This study further hypothesized that DS was a 

combination of two latent attributes: acceleration/deceleration and low-speed pass-through. More 

specifically, the effects of normal travel speed (V0) and travel speed limit around the work zone 

(Vw) on speed reduction delay (DS) were analyzed in miles-per-hour (mph). 

 
Figure 2. Daily traffic delay (DTD) versus traffic loading (AADT) for various WZL scenarios. 

 

 𝐸𝐸𝑆𝑆 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 × �
(𝑉𝑉0 − 𝑉𝑉𝑤𝑤)

𝑀𝑀
+ 𝑊𝑊𝑊𝑊𝑊𝑊 × �

1
𝑉𝑉𝑤𝑤

−
1
𝑉𝑉0
�� (3) 

where 𝑀𝑀 is a coefficient related to the vehicle’s acceleration and deceleration ability, and 

WZL is the work zone length measured in miles. The acceleration/deceleration delay was only 

associated with the speed difference between V0 and Vw, while the low-speed pass-through delay 

was determined by V0, Vw, and WZL.   

As stated previously, the duration of project would have a significant impact on the level of traffic 

disruption. As shown in Figure 3, two descriptive factor analyses were performed on the 84 

schedule datasets to investigate the trends between idle time, closure duration, production rate, and 
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project duration, conveying that idle time, production rate and project scope (i.e., centerline miles 

to be rebuilt) were the most critical factors in relation to lane closure duration estimates and their 

respective effects on traffic delay.  

 
Figure 3. Descriptive analysis of the schedule data. 

The schedule factor analysis revealed that the number of lane closure days should be linked to the 

holistic modeling of WZL and is significantly affected by production rate. For any typical 3R-like 

concrete pavement rehabilitation project, using certain idle times for non-value-adding activities 

such as site preparation, resource mobilization/demobilization, concrete curing time, and lag time 

between activities is unavoidable. In this regard, assuming that the production rate (µ) is measured 

in lane-miles to be constructed per day and the duration of each closure is d and measured in days, 

then the actual production rate per closure (U) can be calculated with: 

 𝑈𝑈 = [𝑑𝑑 − 𝐸𝐸0] × 𝜇𝜇 (4) 

where 𝐸𝐸0 is the idle time defined by Eq. 3. It is important to note that if the calculated 

productive time (𝑑𝑑 − 𝐸𝐸0) value is zero or negative, the project cannot be finished under the given 

d value since there is not enough time to produce any work within the duration of each closure, 

making the entire phasing plan invalid. 

4.3 Preliminary Modeling 
The findings from the data simulations and follow-up descriptive analysis provided the research 

team with a valuable foundation for this study. The latent attributes of WZL were identified in 

association with the level of traffic inconvenience, enabling the research team to strategically 

determine their focus and how to streamline the subsequent modeling procedures (24). In order to 
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model WZL in a way that balanced ideal tradeoffs between travelers’ inconvenience and 

constructability, it was essential to develop the following two preliminary models.  

A Stochastic Gradient Descent (SGD) non-linear regression analysis using a Generalized Reduced 

Gradient (GRG) tool was performed to find the best fit values of the variables for Eq. 3 and Eq. 4 

for all valid data points. This tool was developed as a non-linear solving plug-in for Microsoft’s 

Excel by Frontline System based on the work of Lasdon et al. (1974) (25), and  Lasdon et al. (1975) 

(26). SGD can find local optimal solutions for non-linear problems by modifying the target 

parameters in a way that can minimize the value of a cost function (in this case the sum squared 

error) using a one or a few data points at each iteration. By doing this, it significantly reduces the 

computational steps required to converge while still maintain an acceptable accuracy of non-linear 

regression analysis, with the risk of reaching a local (instead of global) optimum. For more details 

on the SGD solver of Microsoft Excel, the reader is referred to Frontline Systems (27). 

In general, the SGD analysis plug-in for Excel can automatically calibrate non-linear regression 

models by tweaking a set of target variables in the model to maximizing or minimizing the value 

of a cost function in a target cell, usually representing the sum square error (SSE) of the model 

(28). In the traffic analysis, the generated traffic data were used as observations, and the plug-in 

tool was conducting an SGD on the value of the parameter 𝑀𝑀 in Eq. (3) to minimize the SSE, which 

is the sum square of the difference between the value of the generated traffic data and the value 

calculated with Eq. (3) with the current 𝑀𝑀 value. Similarly, for schedule analysis, the tool was used 

to estimate the value of 𝜇𝜇 in Eq. (4) with the schedule simulation data.  
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5. ANALYSIS AND FINDINGS 

5.1 Stochastic Gradient Descent Regression Analysis 
Speed reduction delay (DS) was defined in Eq. 2. This study leveraged the 270 traffic simulation 

datasets that were under the EAADT threshold �̅�𝐸 to estimate the value of the coefficient a through 

a regression analysis with Excel GRG solving algorithm. This resulted in the following 

quantitative model: 

 𝐸𝐸𝑆𝑆 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 × �
(𝑉𝑉0 − 𝑉𝑉𝑤𝑤)

10,674 𝑚𝑚𝑚𝑚ℎ/ℎ
+ 𝑊𝑊𝑊𝑊𝑊𝑊 × �

1
𝑉𝑉𝑤𝑤

−
1
𝑉𝑉0
�� (5) 

 

In this study, the latest value of time (VOT) published by the Texas Department of Transportation 

(29) was used to calculate the daily road user cost (DRUC). The VOT for passenger cars (𝑉𝑉𝑉𝑉𝐸𝐸𝐶𝐶) 

was $30.12 per-vehicle-per-hour (pvph), and for commercial trucks (𝑉𝑉𝑉𝑉𝐸𝐸𝑇𝑇) the value was $41.33 

pvph. Using those values, DRUC can be calculated based on DTD, PCE, and τ, using the following 

equation: 

 𝐸𝐸𝐷𝐷𝑈𝑈𝑃𝑃 = 𝐸𝐸𝐸𝐸𝐸𝐸 ×
𝑉𝑉𝑉𝑉𝐸𝐸𝐶𝐶 × (1 − 𝜏𝜏) + 𝑉𝑉𝑉𝑉𝐸𝐸𝑇𝑇 × 𝜏𝜏

1 + 𝜏𝜏 × (𝑃𝑃𝑃𝑃𝐸𝐸 − 1)  (6) 

 

Similar to the traffic impact analysis, the GRG solving algorithm was adopted to conduct a 

regression analysis upon the 76 valid datasets (after removing eight invalid datapoints) to estimate 

the optimal value for the coefficients of Eq. 4. The resulted quantitative model is: 

 𝑈𝑈 = [𝑑𝑑 − 𝐸𝐸0] × 0.4724 𝑙𝑙𝑀𝑀𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑚𝑚/𝑑𝑑𝑀𝑀𝑑𝑑 (7) 

Based on the preliminary traffic model, the level of traffic disruption is affected significantly by 

WZL. In practice, according to the guidelines specified in transportation management plans, WZL 

should be longer than the section to be rebuilt during a lane closure, with buffer space in and 

between the work zone. Therefore, WZL should be equivalent to the value of the production rate 

U calculated with Eq. 4, plus the total length of the established buffer space in and between the 

work zone, which is defined as 𝑊𝑊𝑇𝑇. The length of 𝑊𝑊𝑇𝑇 was set to be 0.30 mile (1,570 ft) according 

to the Manual on Uniform Traffic Control Devices guidelines for traffic control plans (13, 30). 

The following preliminary quantitative schedule model was developed:   
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 𝑊𝑊𝑊𝑊𝑊𝑊 (𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑚𝑚) = 𝑈𝑈 + 𝑊𝑊𝑇𝑇 = [𝑑𝑑 − 𝐸𝐸0] × 0.4724 + 0.30 (8) 

The project scope S (i.e., lane-miles to be rebuilt for the project) is known from the very early 

stages of project scoping. With the estimated production rate per closure U, the number of lane 

closure working days D can be calculated with the following equation: 

 𝐸𝐸 =
𝑆𝑆
𝑈𝑈

× 𝑑𝑑 (9) 

5.2 Decision Support Model to Determine the Most Realistic Work Zone 
Length  
To find the most feasible WZL, the proposed decision-support model computes the total RUC by 

accounting for the closure duration (d), with the identified critical factors such as project duration 

(S), traffic loading (AADT),truck percentage (𝜏𝜏), normal vehicle speed (𝑉𝑉0), work zone speed limit 

(𝑉𝑉𝑤𝑤), idle time (𝐸𝐸0), and production rate (𝜇𝜇). For a value of d to be valid, it needs to be greater 

than the idle time 𝐸𝐸0 to produce any actual work. Also, in most practices, a single lane closure with 

a continuous work shift rarely goes beyond seven continuous days. Thus, in this study, the valid 

range of d was reasonably set to be:  

 𝐸𝐸0 < 𝑑𝑑 ≤ 7 (10) 

Specifically, for each tested value of d, the model evaluates the total traffic impact in the total RUC 

(C) of a work zone over the entire duration of the construction, which integrated the result from 

both the preliminary predictive models of traffic and schedule as follows: 

 𝑃𝑃 = 𝐸𝐸𝐷𝐷𝑈𝑈𝑃𝑃 × 𝐸𝐸 (11) 

The value of C can be computed by conducting the following five steps:  

1. WZL is estimated by Eq. 8.  

2. DRUC is calculated by Eq. 5 based on the value of WZL.   

3. A respective production rate per closure, U, is estimated with Eq. 7.  

4. Project duration, D, is computed using Eq. 9.  

5. C is calculated using Eq. 11. 

The five steps above will be repeatedly performed on all the probable values of d (i.e., closure 

duration). And the model will find the d value and its corresponding WZL that cause a minimal 
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amount of traffic impact throughout the entire construction. For example, assuming a generic 

production rate and sequence of construction with the 36-hour idle time, the effects of traffic 

loading (EAADT) on RUC and working days per closure (d) were examined at an interval of 10,000 

ranging from 10,000 to 40,000. The results (see Figure 4) indicated that an optimal value of d that 

minimizes the total RUC exists. 

 
Figure 4. Effect of traffic loading on RUC and project duration 

The research team then performed this process on all pairs of EAADT and T0 values to determine 

the most feasible WZL and d value. Based on these results, two lookup tables (Table 4 and Table 

5) were developed that can intuitively guide agency engineers to perform a tradeoff analysis, thus 

determining the most feasible WZL by balancing the tradeoff point between the given traffic 

loading, constructability, and project schedule considerations.  
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Table 4. WZL Lookup Table for the Various Levels of Traffic Loading and Construction Idle Time 

 

 

Optimal Work Zone Length (WZL) 

 Idle Time 
EAADT 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 

6000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

8000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

10000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

12000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

14000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

16000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

18000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

20000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

22000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

24000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

26000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

28000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

30000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

32000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

34000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

36000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

38000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 

40000 0.69 0.61 0.54 0.93 0.85 0.77 0.69 1.09 1.01 0.93 0.85 1.24 1.17 1.09 1.01 1.40 1.32 1.24 1.17 
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Table 5. Project Duration Estimate Lookup Table for the Various Levels of Traffic Loading and Construction Idle Time 

Working Days per Closure 

 Idle Time 
EAADT 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 

6000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
8000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 

10000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
12000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
14000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
16000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
18000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
20000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
22000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
24000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
26000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
28000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
30000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
32000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
34000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
36000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
38000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 
40000 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 

 

5.3 Implementation Use Case  
To best use these two lookup tables, engineers first need to compute the project specific EAADT 

using Eq. (1) based on AADT and truck percentage 𝜏𝜏 of the construction work zone. The expected 

idle time can be estimated based on construction methods, manuals, and/or historical data. On the 

other hand, Eq. (2) could be used as a shortcut to quickly estimate the idle time by adding up 

construction mobilization time, activity lag time, and concrete curing time or asphalt cooling time. 

With this information of EAADT and idle time estimated, engineers can then leverage the lookup 

tables to determine the optimal WZL along with the project duration estimate per closure in 

working days. 
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6. CONCLUSIONS 
This study presents a new decision support model that can be used to determine the optimal WZL 

in a balanced tradeoff between motorists’ traffic disruption and project constructability. An 

extensive literature review revealed that despite the wealth of research studies examining the 

effects of highway work zones, there is a definite lack of hands-on methods for modeling WZL 

through its latent attributes. This lack of a standardized methodology and set of analytical tools for 

proactively estimating the optimal WZL was the point of departure for this research, and this 

practical need motivated the research team to initiate this study. A rich set of high-confidence data 

was assembled by conducting a series of schedule and traffic simulations.  

The results of the final decision-support model (see Table 4 and Table 5) supports the existence of 

the tradeoff relationship between the traffic impact and project constructability and found the 

optimal point for all EAADT and idle time range within the scope of a rural highway CWZ. With 

the assistance of the two provided tables, agency engineers can easily find the most feasible WZL 

and phasing plan that suits the challenge the project team is facing by finding the matching EAADT 

(calculated with AADT and truck percentage) and estimated construction idle time. According to 

the two tables, for any conditions with EAADT lower than 41,000 vpd, the longer the estimated 

idle times is, the longer the WZL should be, as well as a longer closure duration for each 

construction windows to reduce the costly non-productive work hours. On the other hand, if the 

idle time is anticipated to be short, the WZL should be reduced to minimize the direct traffic 

disruptions to the traveling public, with more frequent phasing for construction and shorter closure 

duration. 

Based on the descriptive factor analysis, a critical benchmarking point of EAADT at 41,000 vpd 

was discovered. Additionally, a series of statistical analyses further validated that the level of 

traffic disruption was affected by WZL, construction idle time, closure duration, and traffic loading 

in rural corridors where the EAADT was lower than 40,000 vpd. The results also reveal that traffic 

loading at 41,000 vpd suggests an important benchmarking point.  

This study is the first of its kind and will help STAs make better-informed decisions by providing 

a point of reference when establishing WZL in construction phasing plans. Use of the models will 

facilitate a more realistic determination of WZL.
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